
Older Adults Learning Computer Programming:
Motivations, Frustrations, and Design Opportunities

Philip J. Guo
UC San Diego

La Jolla, CA, USA
pg@ucsd.edu

ABSTRACT
Computer programming is a highly in-demand skill, but
most learn-to-code initiatives and research target some of the
youngest members of society: children and college students.
We present the first known study of older adults learning com-
puter programming. Using an online survey with 504 respon-
dents aged 60 to 85 who are from 52 different countries, we
discovered that older adults were motivated to learn to keep
their brains challenged as they aged, to make up for missed
opportunities during youth, to connect with younger family
members, and to improve job prospects. They reported frus-
trations including a perceived decline in cognitive abilities,
lack of opportunities to interact with tutors and peers, and
trouble dealing with constantly-changing software technolo-
gies. Based on these findings, we propose a learner-centered
design of techniques and tools for motivating older adults to
learn programming and discuss broader societal implications
of a future where more older adults have access to computer
programming – not merely computer literacy – as a skill set.

Author Keywords
older adults; learning programming; computational literacy

ACM Classification Keywords
K.3.2 Computers and Education: Computer and Information
Science Education – Literacy

INTRODUCTION
Computer programming is now such an in-demand skill
that government and corporate leaders are issuing calls for
widespread programming education. For instance, countries
such as the U.K. and Japan, along with major U.S. cities such
as Chicago, San Francisco, and New York City, have made
pledges to offer programming classes in all public primary
and secondary (K-12) schools [15, 46, 55]. The CEO of Gen-
eral Electric, one of the world’s largest companies, recently
stated that he wanted all employees to learn this skill: “If you

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2017, May 06–11, 2017, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4655-9/17/05...$15.00
DOI: http://dx.doi.org/10.1145/3025453.3025945

are joining the company in your 20s, unlike when I joined,
you’re going to learn to code. It doesn’t matter whether you
are in sales, finance or operations. You may not end up being
a programmer, but you will know how to code.” [32]

So far, the vast majority of these learn-to-code initiatives have
focused on the youngest members of society: those under the
age of 25. There is an abundance of research on techniques
and tools for teaching programming to students in elemen-
tary school [20, 48], middle school [23, 33], high school [34,
61], and college [10, 26, 51], and to training new employees
in the workforce [6]. In recent years, HCI researchers have
also started studying motivations for learning programming
amongst mid-career professionals, usually in their 30s and
40s [12, 14, 17]. However, a notable portion of the popula-
tion has not been mentioned in any of these initiatives: older
adults who are retired or in the latter stages of their careers.

Older adults now comprise a significant and rapidly-growing
fraction of the global population. The United Nations esti-
mates that by 2030, over 25% of the populations of North
America and Europe (and 16% of the overall world popula-
tion) will be at least 60 years old [41]. The HCI research
community has long recognized the importance of this age
group by studying how they interact with and learn to use a
wide variety of computational technologies [5, 8, 9, 30, 35,
36, 37, 39, 43, 44, 53, 58, 60]. Yet there has been no research
on how older adults learn to use one of the most expressive,
foundational, and powerful technologies of all: programming
languages that enable them to directly control computers.

Why care about older adults learning computer programming
in particular? Programming skills can empower this large and
fast-growing population to: 1.) improve their quality of life
and social ties by engaging in this challenging, creative, and
collaborative activity, 2.) maintain gainful part- and full-time
employment as they age, which again improves quality of life
and further diversifies the currently youth-skewed technology
workforce [11, 31, 59], and 3.) serve as a potential pipeline
of K-12 teachers necessary for educating future generations
about computing in a scalable way, which helps alleviate the
current shortage in primary and secondary schools [16]. In
addition, we believe that recent efforts to broaden participa-
tion and inclusion in computing [21, 25] should expand to
encompass the now-underserved population of older adults.
However, before taking steps to achieve any of these goals,
we must first understand why and how they are now learning.

Thus, this paper’s main contribution is presenting the first
known study of older adults learning computer programming.
We deployed an online survey to a programming education
website (pythontutor.com) and analyzed data from 504 re-
spondents aged 60 to 85 who are from 52 different countries.
We investigated why older adults are learning programming,
how they are learning, and what frustrations they are facing.

We found that older adults were often motivated by age-
related reasons such as keeping their brains challenged as
they aged, making up for missed learning opportunities dur-
ing their youth, connecting with younger family members,
and improving their job prospects. They frequently used free
online resources such as MOOCs, web-based tutorials, and
digital textbooks. Finally, they reported a diverse variety of
frustrations, including age-related challenges such as a per-
ceived decline in cognitive abilities, lack of social opportuni-
ties to interact with tutors and peers, and trouble dealing with
constantly-changing software technologies.

Based on these findings, we propose a learner-centered de-
sign [25] of techniques and tools to motivate older adults
to learn programming, using these learners’ motivations and
frustrations as a starting point. Example design ideas include
contextualizing project-based programming lessons to do-
mains of high interest to this population (e.g., digital health-
care, storytelling with personal life narratives), leveraging
their prior knowledge of older technologies to make bridg-
ing analogies to newer technologies that they are now learn-
ing, and developing learning resources and programming aids
that take age-related cognitive impairments into account.

In sum, this paper’s contributions to HCI are:

• An empirical study of older adults learning computer pro-
gramming, based on survey responses from 504 online
learners who are 60 to 85 years old and from 52 countries.

• A learner-centered design of techniques and tools to moti-
vate older adults to learn programming, and potential soci-
etal implications of more older adults doing programming.

RELATED WORK
The study we present in this paper fills a gap in two major
lines of HCI work: 1.) research on learning computer pro-
gramming that targets specific age groups, and 2.) studies of
older adults’ use of computational technology. To our knowl-
edge, no prior work has attempted to bridge those two areas
to study how older adults learn computer programming.

Age-Targeted Research on Learning Programming
Although there is a vast, broad, and mature literature on tools
and techniques for learning programming, here we focus only
on research that targets specific age groups.

Programming education for elementary-school-aged children
is motivated by engaging learners through gaming, story-
telling, or “think like a computer” activities. Classic work
such as Papert’s Mindstorms [48] used the Logo language
with embodied turtle graphics to teach algorithmic and cre-
ative thinking to young children. Blocks-based programming

languages popularized by Scratch [1] and Android App In-
ventor [62] make programming more accessible to novices by
eliminating syntax errors and by tying it to domains such as
interactive storytelling and mobile app development, respec-
tively. Although these tools can be used by all age groups,
their development is mainly driven by the needs of children.
Scratch is designed for ages 8 to 16 [1], and a simplified
mobile-device version called ScratchJr is for ages 5 to 7 [20].

Programming education for middle- and high-school-aged
children often use higher-fidelity environments that incorpo-
rate 3-D microworlds and programmable virtual agents. For
example, Storytelling Alice [33], and its descendant Look-
ing Glass [23], enable students to create 3-D stories situated
in virtual worlds, and have been especially engaging to fe-
male middle-school students in particular [33]. Descendants
of Logo such as StarLogo TNG [34] and NetLogo [61] have
been used to teach mathematics, network phenomena, and ex-
perimental science in middle and high school classrooms.

The majority of age-specific research on learning program-
ming currently focuses on college students (e.g., ages 18 to
22), due in part to this learner population being the most
readily-accessible to university researchers and to it being the
direct pipeline to the technology workforce. Significant ini-
tiatives here include diversifying the population of computer
science (CS) majors [10], preparing and retaining students in
introductory CS1 courses [51], and teaching programming ef-
fectively to non-CS majors [26].

Research on working-aged adults learning programming of-
ten focuses on vocational needs. People have studied why
professionals such as graphic and web designers [14], com-
puter science teachers [17], and sales, marketing, and product
managers [12] learn to code on-the-job. Continuing education
is critical since people in the tech industry must constantly re-
train to learn new, fast-evolving programming technologies
to stay competitive on the job market. An age-related under-
current is technology workers over 40 facing issues of age
discrimination as the median age in top firms (e.g., Apple,
Facebook, Google) hovers around 30 years old [11, 31, 59].

All of the aforementioned work share a human-centered tra-
dition of first trying to discover the motivations, values, and
needs of each age group before designing tools and interven-
tions for them. Our work in this paper extends this long dis-
ciplinary tradition to a population that, to our knowledge, has
not been studied in prior work: older adults aged 60 and over.

Older Adults’ Use of Technology
The other main family of work that inspired our study is HCI
research on how older adults use computational technologies,
a topic that has grown popular over the past decade. A 2015
survey paper found that of the 162 papers in SIGCHI venues
that are primarily about aging and technology, 80% of them
have been published since 2007 [57].

Most research in this area have focused on studying older
adults as consumers of technology. These include uses of
digital resources of especially high interest to this popula-
tion such as health websites [37], healthcare patient portal

pythontutor.com

sites [35], and electronic presence indicators for remote care-
takers [5]. It also includes studying how older adults use – or
choose not to use – widespread technologies that are popular
with all age groups, including social networking sites such
as Facebook [30, 44], ridesharing services [39], mobile de-
vices [36], and video games [58]. Recurring themes in such
work include older adults using technology to sustain good
quality of life as they age, to ward off social isolation, and to
maintain connections with family members.

Of more direct relevance to our own work is research that po-
sitions older adults as producers rather than consumers of dig-
ital content. Creation-based activities that have been studied
for this age group include blogging [9], performing micro-
task crowd work [8], making digital music with an Arduino-
based DIY toolkit [53], participating in online discussion
forums [43], and sharing photos and messages with iPad
apps [60]. These studies surfaced participant feelings such as
personal empowerment, creative self-expression, meaningful
engagement, and joy, in contrast to the more utilitarian life-
maintenance themes revealed by consumer-based studies of
technology and aging. However, these activities still involve
older adults using existing apps to create content, sometimes
under experimenter supervision, rather than programming en-
tirely new software applications on their own by writing code.

Our work follows a progression in this literature from study-
ing older adults first as consumers of technology, then as pro-
ducers of digital content, and now to potentially becoming
producers of new technologies via computer programming.
In the Discussion section, we will reflect in detail on some of
the similarities between our findings and what was discovered
by these prior studies of older adults’ use of technology.

METHODOLOGY: INTERNATIONAL ONLINE SURVEY
For this study, we wanted to reach a broad global popu-
lation of learners, so we deployed an online survey to the
programming education website pythontutor.com (Python
Tutor [24]). Learners use this website to practice writing
code and to visually debug their errors using a step-by-
step run-time data structure visualizer. Despite its legacy
name, Python Tutor now supports learning several popular
programming languages including Java, C, C++, Ruby, and
JavaScript. It has been operating for the past six years and
has had over 2.5 million total users from over 180 countries.

We deployed our survey to the Python Tutor website because
it is a free and widely-used resource for learners who come
to the site from a diverse variety of online learning channels
such as: Massive Open Online Courses (MOOCs) by all three
major providers (Coursera, edX, Udacity), Khan Academy,
Codecademy, Stack Overflow, digital textbooks, and many
coding tutorials, blogs, and discussion forums. Thus, even
though a survey on any single website will reach only a lim-
ited population, deploying to Python Tutor reaches a broader
population than say, deploying to a single MOOC, since users
come to Python Tutor from an array of referring websites.

The Survey Instrument
We added the following sentence to the bottom of the Python
Tutor website with a link to a survey hosted on Google Forms:

“If you are at least 60 years old and would like to help our re-
search on how older people learn programming, please fill out
this survey [link URL].” We made the survey link legible but
unobtrusive so as not to unnecessarily distract learners on the
site. Participation was voluntary; we did not pay survey re-
spondents. We opened this survey in March 2015 and closed
it in August 2016.

We made our survey as short as possible to collect basic de-
mographic information and self-reflections about why, how,
and when people were learning. It contained ten questions:

1. What is your age in years?
2. Where do you live? (e.g., country, state, city)
3. What is your gender?

Choices: {Female, Male, Other, Prefer not to say}
4. What is your current employment status? Choices:

{Working, Retired, Semi-retired, Other (free-response)}
5. What is/was your job/occupation/profession?
6. Why are you learning computer programming? (e.g., what

is your motivation for learning?)
7. How long have you been trying to learn programming?
8. How many hours per week do you devote to learning pro-

gramming?
9. What resources are you currently using to learn program-

ming?
10. What has been the most frustrating thing so far about learn-

ing programming?

To give respondents the most flexibility, all questions except
for gender (Question 3) and employment status (Q4) were
open-ended (free-response), and none were mandatory.

Age-60 threshold: Although there is no universally agreed-
upon definition of what “older adult” means, we chose age 60
as the threshold for this study so that we could get a mix of
working (late-stage career), semi-retired, and retired people
in our respondent pool. The United Nations has also adopted
age 60 as a threshold for “older persons” in their World Pop-
ulation Ageing report [41]. Also, the retirement age across
many countries is around 60 to 65 [54], and in the U.S., em-
ployees are eligible to withdraw their 401k/IRA retirement
savings at age 59.5 and Social Security Benefits at age 62.

Data Overview and Analysis
After inspecting all responses, we filtered out several that
were either spam or filled out by people younger than age 60
who did not understand the survey’s instructions. We received
504 valid responses, which we manually coded. To clas-
sify occupation types (Q5), we used the International Stan-
dard Classification of Occupations (ISCO-08) [47] adopted
by the United Nations. To classify motivations for learning
programming (Q6), resources used to learn (Q9), and frustra-
tions (Q10), we iteratively developed a set of codes based on
an inductive analysis approach [13], which resulted in around
a dozen categories for each question (see Tables 2, 3, and 4).
The sole author coded all survey responses side-by-side with
a research assistant who is currently learning programming in
order to iterate on the codes and to double-check the results.

pythontutor.com

Figure 1. Age distributions of the 504 people aged 60 and over who
responded to our online survey about older adults learning computer
programming. The median age was 65.5 years; mean age was 66.5.

Study Design Limitations
The goal of this study was to capture an overview of older
adults learning computer programming. Ideally we would
uniformly sample from all people around the world aged 60
and above who are learning programming. But since we de-
ployed this survey to a U.S.-made English website (Python
Tutor), which is frequently linked to by other English-centric
websites (e.g., MOOCs, Stack Overflow, coding tutorials),
our sample is skewed toward people from English-speaking
countries or those with English literacy skills [28].

Additionally, our sample likely comes from the more autodi-
dactic, technology-literate, self-motivated, and self-reflective
end of the general population [49], since those people are
more willing to take the initiative to pursue online learning
options and to take a survey reflecting on their own learning.
We are likely missing the population of older adults who are
taking in-person programming courses or private tutoring but
not seeking any help online. But since we do not know of any
programming courses or meetups that target older adults, our
intuition is that far more people in this age group are currently
self-learning online than getting face-to-face formal instruc-
tion. In the future, performing a detailed study of in-person
courses containing older adult students, as well as a repli-
cation targeting people from non-English-speaking countries,
would complement the findings from our current study. Fi-
nally, this study involved only one version of an online sur-
vey; additional iterations of this survey and in-depth inter-
views with selected respondents could augment our findings.

DEMOGRAPHICS: WHO ARE THESE LEARNERS?
Before presenting our findings on why and how older adults
learn computer programming and what frustrations they face,
we first describe the demographics of our respondents to pro-
vide context about where these perspectives are coming from.

Figure 1 shows that respondents varied in age from 60 to 85,
with fewer responses from older people (median age=65.5
years). 35% of respondents (177 of 504) reported that they
were working, 15% were semi-retired, and 46% were retired.
The remaining 4% chose “other” (not shown in Figure 1 due
to space reasons). Of those, 12 people identified as “unem-
ployed” (and actively searching for a new job), 2 as “home-

1. Managers 8%
1.1. Chief executives & senior managers 1%
1.2. Administrative & commercial managers 2%
1.3. Product/manufacturing/technology managers 5%

2. Professionals 68%
2.1. Scientists & (non-software) engineers 18%
2.2. Health professionals (e.g., doctors, dentists) 6%
2.3. Teaching professionals (e.g., K-12, college) 18%
2.4. Business & administration professionals 6%
2.5. Software developers 12%
2.6. Legal, social, and cultural professionals 8%

3. Technicians and Associates 15%
3.1. Science & engineering technicians 3.6%
3.2. Healthcare technicians 2%
3.3. Business associates (e.g., loan officer) 0.8%
3.4. Legal, social, and cultural associates 0.6%
3.5. I.T. and software technicians, tech support 8%

4. Clerical Support Workers 1%
5. Services and Sales Workers 2%
6. Agricultural, Forestry, and Fishery Workers 0.4%
7. Craft and Trade Workers 4%
8. Plant and Machine Operators (e.g., bus driver) 0.8%
9. Elementary Occupations (e.g., janitor) 0.2%
0. Armed Forces 0.4%
Table 1. Percent of respondents (N=476) whose self-identified current or
former occupations fit into each top-level category of the 2008 Interna-
tional Standard Classification of Occupations (ISCO-08). For categories
1, 2, and 3, we further classified using ISCO-08 sub-categories.

maker,” 2 as “disabled,” and 2 left it blank. Figure 1 also
shows that older people were less likely to still be working.

84% of respondents identified as male, and 15% as female. Of
the remaining 1%, 2 people identified as other, and 4 declined
to state gender. Although we would have preferred a more
balanced gender representation, these proportions are consis-
tent with what prior surveys of online learning and MOOCs
have found [7, 18, 29] – that men are now overrepresented in
the population of people learning STEM topics online.

Respondents came from 52 countries, although there was a
heavy skew toward North America and Europe. The four
countries with the most respondents were the U.S. (55%),
U.K. (7%), Canada (5%), and Australia (4%). Within the
U.S., respondents came from 41 out of the 50 states.

Respondents also came from diverse kinds of professions.
Table 1 shows the percentage in each category of the 2008
International Standard Classification of Occupations (ISCO-
08) [47], a taxonomy used by the United Nations. People
from all ten top-level categories (from Managers to Armed
Forces) responded to our survey, although the majority were
Managers, Professionals, and Technicians/Associates. For
those three categories, we further classified respondent oc-
cupations into ISCO-08 sub-categories and found that the
most common roles were scientists/engineers (18%), teach-
ers (18%), and software developers (12%). Note that most
teachers were not computer science teachers; they were often
STEM teachers who wanted to learn programming either as
enrichment or to complement their own subject teaching.

Figure 2. Kernel density estimation curves for how many hours per week
respondents said they devoted to learning programming (N=443).

TIME DEVOTED TO LEARNING PROGRAMMING
How long have people been trying to learn programming, and
how many hours per week do they devote to it?

We grouped the 469 responses to “How long have you been
trying to learn programming?” into five buckets: 13% have
been trying for less than one month, 19% for less than one
year, 17% for 1–3 years, 8% for 4–10 years, and 43% for
more than 10 years. In general, most respondents were not
new to programming. But although 43% reported greater than
10 years, that does not necessarily mean that they had been
continually learning for all these years. One common sen-
timent we noticed was people reporting that they first tried
learning several decades ago when they were younger but
stopped due to lack of time; and now they are attempting to
re-learn since they have more free time in retirement.

Figure 2 shows smoothed kernel density estimation (KDE)
curves that estimate the distribution of how many hours our
respondents (N=443) reported that they spent each week on
learning programming. (If someone reported a range – e.g.,
“2 to 4 hours” – their vote gets scaled down and evenly
distributed over that time range.) Unsurprisingly, working
people spent less time each week (median=5 hours) than
retired/semi-retired/unemployed people (median=10 hours).

WHY ARE OLDER ADULTS LEARNING PROGRAMMING?
Table 2 summarizes the 494 open-ended responses to the
question: “Why are you learning computer programming?
(e.g., what is your motivation for learning?)” Total percent-
ages add up to more than 100% since 13% of people wrote
responses that we classified into more than one category.

For the remainder of the reported results, we use excerpts of
quotes from respondents to show representative examples of
emergent themes from each coded category in Tables 2, 3, and
4. Also, not all findings apply exclusively to older adults; the
most age-relevant findings are marked with ? in those tables.

Age-Related Motivations
The two most common motivations for learning programming
were directly age-related (marked with ? in Table 2).

22% of respondents wanted to make up for missed opportu-
nities to learn programming during their youth. A common
respondent archetype we observed was a STEM professional
(e.g., scientist, engineer, technical manager) who learned a

?Making up for missed opportunities during youth 22%
?Keeping one’s brain challenged, fresh, and sharp 19%

To implement a specific hobby project idea 19%
For fun and entertainment 15%
Continuing education for one’s job duties 14%
Vague general interest (e.g., like to learn new things) 10%
To improve one’s future job prospects 9%
To be able to teach others 8%
Computational literacy; understand modern computing 8%
?Directly motivated by children/grandchildren/relatives 5%
Table 2. Kinds of reasons mentioned by respondents (N=494) for why
they are learning computer programming. ?denotes responses that were
often mentioned along with age-related reasons. The total percentage
adds up to more than 100% since 13% of respondents listed reasons
that fit into more than one category.

bit of programming decades ago in college but did not get
a chance to do much programming throughout their career.
Now that they are retired or semi-retired, they have much
more free time to devote to learning this topic that they have
always wanted to learn since they were young. For example,
a 67-year-old retired CIO (Chief Information Officer) wrote:

“My motivation is two fold. First, I did a little program-
ming in school when I was in school (PL1, Cobol), and
when I first started working. However, I got “kicked up-
stairs” [into management] quite quickly, and was never
able to program professionally. I love computer applica-
tions and what they can do, and I love great engineering
talent. I always wanted to be able to create programs but
between work and family, never took the time. Now that
I am retired, I am trying to fulfill the dream and learn.
Secondarily, you need passion and focus when your re-
tire and learning to program provides me that.”

A 60-year-old metal fabrication technician wrote about how
programming is much more motivating and accessible to
newcomers today than when he was young:

“I liked programming as a student. However, at the time
the neon lit cavernous rooms with rows upon rows of
green blinking terminals freed up for homework some-
times after midnight had the same appeal to me as the
coal mines. Not only have the conditions changed a lot
since then. What caught my attention was the capabil-
ities. Self-driving car. Not that I like cars but the pos-
sibility of making it autonomous. The AI allowing the
routines to self improve. How fascinating. How can you
not be motivated?”

19% of respondents wanted to use programming to keep chal-
lenging their brains while in retirement. For instance, a 62-
year old recently-retired surgeon wrote, “The only way to
keep young in mind and body is to learn forever and excer-
size [sic].” A 73-year-old retired computer repair technician
wrote, “I never had to learn programming to do my job but
I was always interested in it. The medical experts say that
learning something new will keep a mind sharper longer.”
A 68-year-old retired county planner mentioned how he pre-
ferred programming over playing “brain training games” such
as Lumosity [2] that are now popular with older adults: “Also

feel [programming] is a better mind strengthening tool than
Luminosity [sic], etc.” Regardless of whether computer pro-
gramming indeed keeps an aging brain sharp over time (we
do not know of any studies), many respondents at least per-
ceived it to do so and thus were motivated by that reason.

Finally, 5% of respondents were directly motivated by their
younger relatives, such as children, grandchildren, nephews,
and nieces. A 69-year-old architect wrote, “[I want to learn]
for knowledge and to see what its all about. My daughter en-
rolled in an online course on Coursera and it sounded like
fun so I did the same. Have taken several since.” A 63-
year-old business executive wrote, “I like to learn new things.
My daughter is very interested in programming so she is the
one who teaches me and motivates me.” For some, program-
ming was a shared hobby that could help them connect better
with their younger relatives. A 65-year-old retired accountant
wanted to use programming to “get closer with my grand-
kids.” And a 72-year-old retired woodworker wrote, “I’m try-
ing to learn programming in order to help my grandson who’s
currently learning the basics of how to start programming.”

Enrichment-Related Motivations
Another major class of motivations was related to personal
enrichment: 19% wanted to learn programming to implement
a specific hobby project idea, 15% for fun and entertainment,
and 10% out of vague general interest in learning new things.
Although these reasons are certainly not age-specific, retired
and semi-retired people tend to have more free time to spend
on hobbies and enrichment [57].

Some respondents noted that programming is a good hobby
because it can be done in the privacy, comfort, and safety of
one’s own home without requiring many external resources.
For instance, a 75-year-old retired real estate broker from
Uruguay observed how it can be a pragmatic and sustain-
able hobby for people in his age group: “Not many entertain-
ment choices for older people. Not a very good idea to spend
too much time on the streets. Strong age discrimination. On
the positive side a fantastic fiber glass connection to internet.
Spend most time between home and the gym 3 blocks away.”

Some respondents were specifically motivated to create
hobby projects in domains of interest to older adults, includ-
ing digital family genealogy and healthcare analytics. One
person wrote, “I think about tech ideas for older people fre-
quently and think learning not just programming but tech gen-
erally provides a good base for moving ideas forward.” And
this detailed response by a 64-year-old retired network engi-
neer captured both the keeping-one’s-brain-active motivation
as well as the desire to create software projects for seniors:

“My motivations are twofold. First, by endlessly learn-
ing new things, I hope to delay or reduce the effects of
senility on my brain. Keep those new synapses forming
everyday. Second, to take advantage of data produced by
the many health related, sensor based monitors (FitBits,
Blood Sugar Monitors, Heart Monitors, Motion Moni-
tors, etc) I want to help myself and other senior citizens
maintain an independent living lifestyle that is afford-
able by the masses not just seven figure 401K owners.”

Job-Related Motivations
The final class of motivations was vocational in nature, simi-
lar to what all working people – regardless of age – need to do
to keep up-to-date in technology-related jobs. However, the
challenges of layoffs, age discrimination, and troubles finding
new jobs are more likely to affect older workers [11, 31].

14% wanted to learn programming as continuing education
that is directly relevant to their current job. A 68-year-old
website designer wrote, “I wanted a refresher (learned VB
about 15 years ago, but have not used it much, especially re-
cently). My job allows/encourages continuing education, and
I want to keep challenging myself. And, I have a particular
task at work I’d love to be able to automate.”

Another 9% wanted to learn programming to improve their
future job prospects, either because they were unemployed,
looking to switch careers, or semi-retired and seeking part-
time income. A 61-year-old unemployed programmer wrote:

“Before being laid off due to a company reorganization,
we had started utilizing automated testing. Test automa-
tion requires some level of programming knowledge so
I enrolled in a introductory Java course which I com-
pleted after the lay off. Currently, I’m learning Python
to add it to my programming skills arsenal for possible
use in some paid and/or volunteer capacity.”

Other older technology-sector employees, such as this 62-
year-old tech support worker, had similar stories of layoffs:

“My career ended in 2001 during the technology ‘crash.’
My employer went out of business. I, along with 30 oth-
ers in the engineering department were laid off. Ca-
reer level jobs were very scarce. Younger people were
cheaper to employ. [...] I am trying to regain some fresh
technical competencies to enable transition into a better
position [as an employee or independent contractor]”

8% of respondents wanted to understand what modern com-
puting is about (i.e., computational literacy) because they felt
like it could enrich their careers even if they do not need to
do any programming themselves. A 69-year-old research sci-
entist wanted to learn “to be conversant with programmers I
work with,” fitting the persona of Chilana et al.’s conversa-
tional programmer [12]. A 67-year-old retired business sys-
tems analyst wanted to learn “as a means of keeping my brain
active. In addition, given the world today, I believe every-
one should know how to program as well as learn how to
think and solve problems computationally.” And a 62-year-
old CEO mentioned the importance of computational literacy
for modern businesspeople and other leaders:

“I run a large corporation in Colombia. I strongly be-
lieve that if I do not change my analog thinking I will not
be able to conduct the business I run in an exponential
world. I do not want to be a programmer, I do want to
understand the logic of the new world we are living.”

Finally, 8% wanted to learn to teach others. Although some
were full-time teachers, others wanted to transition into part-
time adjunct teaching as they phased out of their primary ca-
reers (either voluntarily or involuntarily due to layoffs).

Massive Open Online Courses (MOOCs) 44%
Blogs, web tutorials, language/library documentation 39%
Paper trade books 28%
Free non-MOOC online courses (e.g., Codecademy) 17%
Electronic trade books 9%
YouTube and other video-based tutorials 8%
Paper textbooks 8%
Paid online courses (e.g., Udemy, Lynda) 6%
Online discussion forums (e.g., Stack Overflow) 3%
Electronic textbooks 3%
In-person formal class, bootcamp, or seminar 3%
In-person interactions with peers, MOOC meetups 2%
Resources at the library 2%
Table 3. The resources that survey respondents are using to learn com-
puter programming (N=435). Total adds up to more than 100% since
26% of respondents listed resources that fit more than one category.

HOW ARE OLDER ADULTS LEARNING PROGRAMMING?
Table 3 summarizes the 435 open-ended responses to the
question: “What resources are you currently using to learn
programming?” 26% wrote responses that we classified into
more than one category, so totals add up to more than 100%.

The majority of learners used free online resources such as
MOOCs, blogs, YouTube, and discussion forums. This find-
ing is unsurprising since our survey was deployed to a free
educational website that was often linked to by other free re-
sources. Still, it indicates that older adults find and use similar
kinds of online resources that learners of all ages use.

67% of respondents took some sort of online course. The
most popular (used by 44%) were MOOCs from all three ma-
jor providers: Coursera, edX, and Udacity. People took intro-
ductory programming MOOCs in languages such as Java and
Python, as well as domain-specific ones such as data science
(e.g., in R and MATLAB) and web development (JavaScript).
In addition, 17% took free non-MOOC online courses such as
those from Codecademy and Khan Academy, while 6% paid
for online courses such as those from Udemy and Lynda.

For online content that was not organized into courses, 39%
of respondents used free web-based materials such as blogs,
tutorials, and documentation for programming languages or
libraries; 8% used YouTube and other video-based tutorials;
and 3% used discussion forums such as Stack Overflow.

Almost half of all respondents (48%) used some kind of book.
Trade books (often written by industry practitioners) were
more popular than textbooks (often written by academics).
Far more people used traditional paper versions of books
than electronic versions. And 2% of respondents mentioned
checking out those books at their local library.

Only 5% of respondents mentioned in-person learning, ei-
ther in formal classes (3%) or informally from peers (2%).
Although this is a consequence of deploying our survey to
a website, the small percentage of learners who have had
in-person pedagogical interactions is still noteworthy. One
possible explanation is that older adults (unlike, say, college
students) have relatively fewer opportunities to take classes,
to attend social meetups (e.g., hackathons, on-campus career

Bad pedagogy (e.g., jargon, lack of scaffolding) 21%
?Cognitive impairments (e.g., forgetfulness) 12%

Syntax errors 12%
?Lack of free time (e.g., job or home caretaker duties)11%
?No human contact with tutors or peers 10%
?Software choices are too vast and fast-changing 8%

Software installation and configuration problems 8%
Programming language-specific features 7%
Run-time errors 7%
Poor online documentation 6%
?Affective barriers (e.g., fear, self-doubt) 6%

Programming lessons lack real-world relevance 6%
Lack of algorithmic thinking skills 6%
Lack of formal mathematical background 3%
?Lack of job opportunities for older people 1%
Table 4. Kinds of learning frustrations mentioned by respondents
(N=414). ?denotes responses that were often mentioned along with age-
related reasons. Total adds up to more than 100% since 15% of respon-
dents listed frustrations that fit into more than one category.

fairs, tech talks), or to learn informally from peers, but they
can still find online resources just as easily as people of all
ages can. We know of no prior research or educational initia-
tives on formal programming classes that target older adults,
so our hunch is that online self-directed learning avenues are
currently the most widely-used amongst this age group.

WHAT FRUSTRATIONS DO LEARNERS EXPERIENCE?
Table 4 summarizes the 414 responses to the question: “What
has been the most frustrating thing so far about learning
programming?” 15% wrote responses that we classified into
more than one category, so totals add up to more than 100%.

Age-Related Frustrations
The following frustrations (marked with ? in Table 4) are
not exclusive to older adults, but our survey respondents fre-
quently mentioned age as a contributing factor in responses.

12% of respondents mentioned frustrating cognitive limita-
tions such as bad memory, forgetfulness, slow speed of com-
prehension, lack of mental clarity, and difficulty in concen-
trating. A 68-year-old retired programmer summarized:

“I think I know what the principal difficulties are: a.)
ingrained habits [...] b.) age: Maybe not everybody
does, but I forget. This is the basic reason that I retired,
when I noticed that jobs that used to take 10 minutes
now take an hour. Again, I may be overgeneralizing,
but I think that programming is done by keeping actively
in mind everything related to the problem and the code,
which takes some warming up time, and is easily broken
by interruption, and cannot work without memory.”

A 62-year-old electrical engineer humorously reported his
frustrations when learning programming, in spite of his exten-
sive technical background and career spent in a related field:

“Given that I was a VERY early adopter of micropro-
cessor / microcontroller technology, I have NO fear of
the equipment or the concepts. But things that were
almost “automatic” a few years back seem to take a

lot more time and effort to digest and store than they
used to. Early onset Alzheimer’s? Probably not. ACS?
(Advanced curmudgeon syndrome) - Probably some of
that. There is definitely something going on with the
malleability of my neurons as I get older - LOL”

A few respondents, including this 71-year-old retired I.T.
technician, mentioned health problems contributing to im-
paired cognitive abilities:

“I have to take medications for Back Pain and Nerve-
memory that causes pain and cramping in my right leg.
The medications interfere with my short-term memory,
which in turn interferes with committing things to long-
term memory. These are the same symptoms as prema-
ture Alzheimer’s Disease...”

Even though we initially thought that older adults would have
more free time, 11% of respondents cited lack of free time as
a frustration. While the majority of those people were still
working, even retirees mentioned lack of time since they had
other life duties to take care of. For instance, a 69-year-old
retired electronic power systems manager mentioned his care-
taker role at home: “I am a full time (24/7) carer for my wife,
so life is full of interruptions: it is difficult to concentrate.”

10% mentioned lack of human contact with tutors or peers
as frustrating due to feelings of social isolation, lack of emo-
tional support, and lack of real-time technical guidance. A
67-year-old retired business analyst said, “I don’t personally
know anyone (in or out of my age group) who has the same
level of interest that I have regarding programming or com-
puting in general. As a result I’m more or less on my own.”

Lack of human contact is a challenge that all online learners
face, but this 60-year-old I.T. salesperson emphasized that it
may be an especially salient problem for older adults:

“This is by far the most important question you are ask-
ing, because i have to imagine that many 60+ people
are facing this same challenge as I. Programming is not
something that should be done as a lone person even
with the resources that i mention above. Learning a pro-
gramming language is much like learning a foreign lan-
guage. Yes, one could teach them selves French by read-
ing a bunch of books, but it sure would be faster if one
practiced speaking with French people. Programming
languages are the same. You learn a lot faster in collab-
oration with others that are learning at the same time.
[...] Net of it all: efficient collaboration is the key for the
60+ crowd to learn programming.”

8% of respondents were frustrated by the sheer multitude of
choices in software packages and the rapid rate of change
of what technologies are currently in vogue. One wrote,
“Plus, the field is always evolving, so you may be learning
stuff that is on its way to extinction.” Although this challenge
is certainly not limited to this age group, some respondents
expressed how they pined for the “good ole’ days” when
technology choices were more limited and slower-changing.
An engineer who has been programming professionally since
1983 wrote: “I am basically an assembler programmer.

There are about 100 instructions, you know precisely, to the
bit level, what each one does, and with a good debugger you
can actually see the bit changes, with complete control. With
high level languages, all that goes to hell. Java has some
3000 built in classes, each of which wants strictly typed argu-
ments, and has a name longer than Mahabharata.”

6% of respondents cited affective barriers such as fear, self-
doubt, lack of self-efficacy, and being afraid of falling behind
when taking MOOCs. Although these issues affect novices
of all ages, some older adults are more anxious about learn-
ing to use computers [57], so those feelings may also transfer
to learning programming. Finally, a few unemployed respon-
dents (1%) were frustrated by their perceptions of age dis-
crimination: e.g., “No matter what I learn, I know that at my
age, no one will hire me.” Another wrote: “I’m not getting a
job! No one wants to hire people over 40 for programming.”

Pedagogy-Related Frustrations
The most common kind of frustration (mentioned by 21%
of respondents) was regarding bad pedagogy. Respondents
complained about a lack of instructional scaffolding, sud-
den spikes in difficulty levels of lessons, not enough exam-
ple problems, and too many low-level jargon-filled technical
explanations that focus on the “how” and not the “why.”

A 74-year-old retired physician observed that many free pro-
gramming tutorials are created by practitioners who are not
trained as teachers: “Most [tutorials] are offered by people
who must know how to program but don’t seem to have much
training in teaching.” And a 71-year-old retired electrical en-
gineer and sales manager used his age to humorously lament
the lack of scaffolding: “Noticed both John Hopkins and Rice
[MOOCs] have a tendency to throw us in the water and yell
swim!! I don’t have the time to waste floundering around.
Males in my family die before their late 60’s. As the excep-
tion in mine, I’m well aware I’m on borrowed time.”

6% of respondents complained about a lack of real-world rel-
evance in what they were learning. They wanted to see more
practical problems being solved with code rather than lessons
that focus exclusively on abstract concepts.

Finally, 6% were frustrated by poor-quality and poorly-
organized online documentation, too much “marketing-
speak” in programming materials (both open-source and cor-
porate), and frequent errors and typos in learning resources.

In theory, these pedagogy-related frustrations could be elim-
inated by taking a well-designed, carefully-vetted, high-
quality course. However, in reality people tend to forage on-
line for a variety of piecemeal resources (see Table 3), which
are of varying quality. Also, the abundance of free resources
surfaced by web searches makes it hard for a novice to hone
in on the best ones for their own learning needs.

Technology-Related Frustrations
The final class of frustrations are those that all novices com-
monly face. Debugging syntax (12%) and run-time errors
(7%) is perennially painful for novices [3]. Technical fea-
tures of specific programming languages accounted for 7% of
frustrations. e.g.,: “Pointers in C is the most frustrating one

that took me nearly 5 months to understand it properly.” Soft-
ware installation and configuration frustrated 8% of respon-
dents. e.g.,: “Building and maintaining attendant infrastruc-
ture requirements, from operating systems (Linux), utilities
(Git) and languages themselves, and their maintenance.”

6% of respondents were frustrated by their inability to think
algorithmically to conceptualize, plan, and implement solu-
tions to programming problems. One wrote, “The language
is easy. Solving problems in discrete steps is hard. Develop-
ing the heuristic, converting that into an algorithm, and then
creating a program from it.” Finally, 3% explicitly called out
a lack of mathematical background as a hindrance. e.g.,: “I
didn’t take enough math earlier in life to more easily grasp
the computer science concepts. So I kick myself over that.”

In theory, these frustrations could be alleviated by having
more real-time help from tutors or peers, but another common
frustration (from 10% of respondents) was that such human
contact was not readily available to people learning online.

DISCUSSION
We reflect on our findings in three ways: We first relate what
we discovered to the findings of other HCI studies on aging
and technology, then propose a learner-centered design [25]
of techniques and tools to motivate more older adults to learn
programming, and conclude by speculating on what the future
may look like if more older adults learn programming.

Relationship to HCI Research on Aging and Technology
Since programming is a kind of computer-based technology
– albeit a sophisticated one – we expect that what motivates
and frustrates older adults in learning about this technology
will align with how they perceive other digital technologies.

Reflecting on the motivations for learning programming in
Table 2, a top motivator for our respondents (19%) was the
desire to keep their brains challenged, fresh, and sharp. This
mirrors similar motivations for performing writing-related
creative work such as blogging [9] and posting to online
discussion forums [43], where older adults wanted to feel a
sense of meaningful, purposeful engagement rather than pas-
sive entertainment such as watching TV. Also, Brewer et al.
found that mental stimulation was the highest-rated motivator
for older adults to perform microtask crowd work on Ama-
zon Mechanical Turk, even surpassing the obvious benefit of
making money from that work [8]. Their study participants
also wanted to work on more challenging and sophisticated
tasks that could possibly serve as cognitive conditioning.

The desire to create hobby projects was another big motiva-
tor (19% of respondents). Some mentioned wanting to vol-
unteer to build software or websites for local organizations or
to teach programming on a voluntary basis in local schools.
Prior studies have found many benefits of volunteering on
the well-being of older adults, including improved health, re-
duced feelings of social isolation, and longer lifespans [40].

5% of respondents were also motivated by younger family
members, both as a way to understand what technologies the
younger generations are now using and to foster connections
with those family members. Some also wanted to learn to

teach programming to their grandchildren. Prior work has
shown how older adults value using technology to keep in
touch with family, and how they also prefer more substan-
tive long-form communication rather than superficial interac-
tions on social media [30, 38]. Sharing a common learning
goal and taking online courses together can be one substan-
tive channel for staying connected with family members.

Job-related motivations such as continuing education and im-
proving one’s future job prospects were not often mentioned
by prior studies, since those focused more on recreational
rather than vocational activities. One exception is Brewer
et al.’s study of crowd work, where some older adults were
motivated by making side income from performing Mechan-
ical Turk microtasks [8] Computer programming is unique
amongst technologies used by older adults because it can be
useful both for recreation and to make a sustainable living.

For frustrations reported by respondents (Table 4), concerns
about age-related cognitive impairments such as forgetful-
ness have been well-documented [52]. Some retired people
also cited lack of free time due to their role as home care-
takers for family members, an activity that has been shown
to be both time consuming and emotionally demanding [50].
Respondents were also frustrated by lack of human contact
with like-minded peers to learn together, which is consistent
with findings on greater social isolation experienced by older
adults as a group [45, 56]. Finally, although all novices face
syntax and run-time errors due to the exact precision required
by text-based programming languages (i.e., any minor typo
can lead to frustrating errors), prior studies of typing mistakes
amongst older adults [27, 42] could point to why these sorts
of errors may be more prevalent amongst this population. An
open question here is how to design better programming inter-
faces to account for these kinds of common input slips faced
by older adults and others with motor impairments.

Learner-Centered Design for Older Adult Programmers
Our survey respondents are mostly using general-purpose on-
line learning resources such as MOOCs and technical blogs
(see Table 3). Although many age-targeted learn-to-code re-
sources exist for children and college students, along with
some for early- to mid-career professionals (see Related Work
for details), to our knowledge, none are tailored to older
adults. What might such curricula and tools look like if they
were designed with this specific learner population in mind?

To generate some initial ideas, we turn to the learner-centered
design process proposed by Guzdial et al. [25], which posits
that we must use the learner’s own motivations and frustra-
tions as the starting points for design. In a similar spirit as
user-centered design, Guzdial advocates performing targeted
studies on specific learner populations and then using empir-
ical findings – rather than instructor intuitions – as the basis
for formulating design suggestions. Since this specific popu-
lation has not yet been studied in prior work, we want to use
our study as the basis for grounding design ideas using Guz-
dial’s template. That said, we acknowledge that some of these
ideas make sense intuitively even without a study and can ap-
ply to other age groups as well. We now present ideas based
on how our findings relate to the seven parts of this template:

1. Understand where learners are starting from and what
they want to do: Although our respondents are a diverse
group – spanning 52 countries, aged 60 to 85, and in dozens
of occupations (Table 1) – we found that they shared a sense
of intellectual curiosity and desires for mental stimulation and
meaningful engagement (Table 2). Based on tone in written
responses, some are proud of being older adults who are ei-
ther tech-literate or have a strong desire to be, so learning
materials need to respect that identity. Thus, it can be a good
idea for resources to explicitly advertise that they are targeted
to this age group so that learners feel like it is meant for peo-
ple like them, but also to make sure not to appear patronizing.
Another idea is to re-frame programming curricula as brain
training games [2] that are now popular with older adults.

2. Understand where learners have trouble: Our respon-
dents’ most common frustrations were about bad pedagogy
and perceived cognitive impairments (Table 4). One solu-
tion to both of these issues is to design learning materials that
emphasize scaffolding, repetition, and abundant examples to
account for potential cognitive impairments commonly faced
by this age group, but taking special care not to appear pa-
tronizing (see above). Designing custom programming envi-
ronments and tools for older learners could also alleviate the
effect of cognitive impairments and reduce input slips [27]
that lead to frustrating syntax and run-time errors. Finally,
another common frustration was lack of human contact with
tutors or peers, which echoes more general feelings of so-
cial isolation amongst this age group [45, 56]. This points
toward the importance of organizing in-person courses or on-
line video chat-based workshops targeted to this age group.
Note that these ideas could be examples of universal design –
focusing on improving the learning experience of older adults
may result in designs that benefit learners of all ages.

3. Scaffolding: Our respondents were often overwhelmed by
the multitude of choices available in modern software devel-
opment, and the ensuing installation and configuration prob-
lems (Table 4). One critical form of scaffolding is to take
away the complexities of choice by providing a uniform yet
full-featured environment with enough built-in libraries to
create authentic, non-toy projects. Starting points include
IDEs such as DrRacket [19] and JES for Media Computa-
tion [26], and packages such as Anaconda [4] for Python.

4. Use terminology that learners understand: Many of our
respondents are scientists, engineers, and other STEM pro-
fessionals who were first exposed to programming during
their youth using technologies from that era such as For-
tran, COBOL, assembly language, and digital electronics cir-
cuitry. One way to design better curricula for this audience is
to leverage their prior knowledge of terminology from these
older technologies that they are familiar with and then make
bridging analogies to similar concepts in newer platforms
(e.g., mobile, web, data science) that they are now learning.

5. Contextualization: Learning resources are more com-
pelling when put into the context of domains that learners per-
sonally care about. One way to contextualize programming
education for this audience is to enable learners to develop
projects of relevance to older adults, which some respondents

were already doing on their own. For instance, much like
how tools enable children to tell fictional stories by writing
code [23, 33], a coding environment for older adults could
facilitate storytelling using digital media from their own life
and family histories, which is an activity of high interest to
this age group [60]. Other project-based learning ideas in-
clude writing software to assist caregivers [5, 50], to mediate
online interactions on social media [22, 30, 44], and to aggre-
gate and organize information from healthcare websites [37].

6. Learners change as they acquire expertise: As our respon-
dents become more experienced, they may transition from
identifying as learners to wanting to be treated as community
volunteers, programming teachers, open-source contributors,
or in some cases, professional software developers. More ad-
vanced learning resources should be catered to how people
self-identify once they are no longer novices. (This part is
not specific to older adults, but is included for completeness.)

7. Acknowledge differences among learners: Finally, older
adults are not a homogeneous population by any means [57],
so it is important not to overgeneralize design ideas or to im-
plicitly claim that there is some sort of optimal design for
everyone in this age range. For instance, a 60-year-old work-
ing engineer is likely to have very different motivations and
constraints than an 85-year-old retiree living in a long-term
care facility. Thus, these ideas should be viewed only as a
starting point.

CONCLUSION
Using survey responses from 504 learners aged 60 to 85,
we discovered a variety of motivations and frustrations from
older adults learning computer programming. This study is
only the first step, though, since we observed an elite popu-
lation of self-selected “early adopters” – mostly people from
technical backgrounds who took the initiative to learn online.
What might the future look like if we make explicit efforts
to broaden the population of older adults who learn to code?
First, more older adults doing programming means that they
have an additional tool to improve quality of life as they age:
This activity can be done in the comfort of one’s own home,
provide engaging mental stimulation, give meaning by em-
powering people to create software that is of value to their
community, and foster social connections to both family and
peers, all of which are important to this population. Program-
ming skills also enable older adults to maintain gainful part-
and full-time employment with flexible jobs where they can
work from home, which is significant as people’s lifespans
continue to increase. Another benefit of greater participa-
tion of older adults in the software industry is that there may
be more emphasis on building products for this fast-growing
population, as opposed to the currently youth-centric product
focus of the tech industry [11, 31, 59]. Lastly, this popula-
tion can potentially become a pipeline of teachers necessary
for educating subsequent generations and alleviate the current
shortage of qualified computing instructors [16, 17]. These
efforts all point toward a future where the spirit of Computer
Science For All [46] means full inclusion of all age groups.

Acknowledgments: Thanks to Steven Dow, Bill Griswold,
Scott Klemmer, Leo Porter, and Beth Simon for feedback.

REFERENCES
1. 2016. About Scratch.

https://scratch.mit.edu/about. (2016). Accessed:
2016-09-19.

2. 2016. Lumosity: Brain Games & Brain Training.
https://www.lumosity.com/. (2016). Accessed:
2016-09-19.

3. Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million
Compilations: Investigating Novice Programming
Mistakes in Large-Scale Student Data. In Proceedings of
the 46th ACM Technical Symposium on Computer
Science Education (SIGCSE ’15). ACM, New York, NY,
USA, 522–527. DOI:
http://dx.doi.org/10.1145/2676723.2677258

4. Continuum Analytics. 2016. Anaconda Distribution
Open Data Science Core.
https://docs.continuum.io/anaconda/. (2016).
Accessed: 2016-09-19.

5. Ingrid Arreola, Zan Morris, Matthew Francisco, Kay
Connelly, Kelly Caine, and Ginger White. 2014. From
Checking on to Checking in: Designing for Low
Socio-economic Status Older Adults. In Proceedings of
the 32Nd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY,
USA, 1933–1936. DOI:
http://dx.doi.org/10.1145/2556288.2557084

6. Andrew Begel and Beth Simon. 2008. Struggles of New
College Graduates in Their First Software Development
Job. In Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE
’08). ACM, New York, NY, USA, 226–230. DOI:
http://dx.doi.org/10.1145/1352135.1352218

7. Lori Breslow, David E Pritchard, Jennifer DeBoer,
Glenda S Stump, Andrew D Ho, and Daniel T Seaton.
2013. Studying learning in the worldwide classroom:
Research into edX’s first MOOC. Research & Practice
in Assessment 8 (2013).

8. Robin Brewer, Meredith Ringel Morris, and Anne Marie
Piper. 2016. ”Why Would Anybody Do This?”:
Understanding Older Adults’ Motivations and
Challenges in Crowd Work. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA,
2246–2257. DOI:
http://dx.doi.org/10.1145/2858036.2858198

9. Robin Brewer and Anne Marie Piper. 2016. ”Tell It Like
It Really Is”: A Case of Online Content Creation and
Sharing Among Older Adult Bloggers. In Proceedings
of the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). ACM, New York, NY,
USA, 5529–5542. DOI:
http://dx.doi.org/10.1145/2858036.2858379

10. Bo Brinkman and Amanda Diekman. 2016. Applying
the Communal Goal Congruity Perspective to Enhance

Diversity and Inclusion in Undergraduate Computing
Degrees. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (SIGCSE
’16). ACM, New York, NY, USA, 102–107. DOI:
http://dx.doi.org/10.1145/2839509.2844562

11. Kevin Casey. 2013. Are You Too Old For IT?
http://www.informationweek.com/strategic-cio/
team-building-and-staffing/
are-you-too-old-for-it/d/d-id/1006268. (Nov
2013). Accessed: 2016-09-19.

12. Parmit K. Chilana, Rishabh Singh, and Philip J. Guo.
2016. Understanding Conversational Programmers: A
Perspective from the Software Industry. In Proceedings
of the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). ACM, New York, NY,
USA, 1462–1472. DOI:
http://dx.doi.org/10.1145/2858036.2858323

13. Juliet M. Corbin and Anselm L. Strauss. 2008. Basics of
qualitative research: techniques and procedures for
developing grounded theory. SAGE Publications, Inc.

14. Brian Dorn and Mark Guzdial. 2010. Learning on the
Job: Characterizing the Programming Knowledge and
Learning Strategies of Web Designers. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). ACM, New York, NY,
USA, 703–712. DOI:
http://dx.doi.org/10.1145/1753326.1753430

15. Stuart Dredge. 2014. Coding at school: a parent’s guide
to England’s new computing curriculum. The Guardian:
https:
//www.theguardian.com/technology/2014/sep/04/
coding-school-computing-children-programming.
(Sep 2014). Accessed: 2016-09-19.

16. Barbara Ericson and Mark Guzdial. 2014. Measuring
Demographics and Performance in Computer Science
Education at a Nationwide Scale Using AP CS Data. In
Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (SIGCSE ’14). ACM, New
York, NY, USA, 217–222. DOI:
http://dx.doi.org/10.1145/2538862.2538918

17. Barbara J. Ericson, Kantwon Rogers, Miranda Parker,
Briana Morrison, and Mark Guzdial. 2016. Identifying
Design Principles for CS Teacher Ebooks Through
Design-Based Research. In Proceedings of the 2016
ACM Conference on International Computing Education
Research (ICER ’16). ACM, New York, NY, USA,
191–200. DOI:
http://dx.doi.org/10.1145/2960310.2960335

18. Deborah A. Fields, Michael Giang, and Yasmin Kafai.
2014. Programming in the Wild: Trends in Youth
Computational Participation in the Online Scratch
Community. In Proceedings of the 9th Workshop in
Primary and Secondary Computing Education (WiPSCE
’14). ACM, New York, NY, USA, 2–11. DOI:
http://dx.doi.org/10.1145/2670757.2670768

https://scratch.mit.edu/about
https://www.lumosity.com/
http://dx.doi.org/10.1145/2676723.2677258
https://docs.continuum.io/anaconda/
http://dx.doi.org/10.1145/2556288.2557084
http://dx.doi.org/10.1145/1352135.1352218
http://dx.doi.org/10.1145/2858036.2858198
http://dx.doi.org/10.1145/2858036.2858379
http://dx.doi.org/10.1145/2839509.2844562
http://www.informationweek.com/strategic-cio/team-building-and-staffing/are-you-too-old-for-it/d/d-id/1006268
http://www.informationweek.com/strategic-cio/team-building-and-staffing/are-you-too-old-for-it/d/d-id/1006268
http://www.informationweek.com/strategic-cio/team-building-and-staffing/are-you-too-old-for-it/d/d-id/1006268
http://dx.doi.org/10.1145/2858036.2858323
http://dx.doi.org/10.1145/1753326.1753430
https://www.theguardian.com/technology/2014/sep/04/coding-school-computing-children-programming
https://www.theguardian.com/technology/2014/sep/04/coding-school-computing-children-programming
https://www.theguardian.com/technology/2014/sep/04/coding-school-computing-children-programming
http://dx.doi.org/10.1145/2538862.2538918
http://dx.doi.org/10.1145/2960310.2960335
http://dx.doi.org/10.1145/2670757.2670768

19. Robert Bruce Findler. 2013. DrRacket: The Racket
Programming Environment.
http://mirror.racket-lang.org/releases/6.4/
pdf-doc/drracket.pdf. (2013). Accessed: 2016-09-19.

20. Louise P. Flannery, Brian Silverman, Elizabeth R.
Kazakoff, Marina Umaschi Bers, Paula Bontá, and
Mitchel Resnick. 2013. Designing ScratchJr: Support
for Early Childhood Learning Through Computer
Programming. In Proceedings of the 12th International
Conference on Interaction Design and Children (IDC
’13). ACM, New York, NY, USA, 1–10. DOI:
http://dx.doi.org/10.1145/2485760.2485785

21. National Science Foundation. 2016. Broadening
Participation in Computing (BPC).
http://www.nsf.gov/funding/pgm_summ.jsp?pims_
id=13510&org=CISE&from=fund. (2016). Accessed:
2016-09-19.

22. Lorna Gibson, Wendy Moncur, Paula Forbes, John
Arnott, Christopher Martin, and Amritpal S. Bhachu.
2010. Designing Social Networking Sites for Older
Adults. In Proceedings of the 24th BCS Interaction
Specialist Group Conference (BCS ’10). British
Computer Society, Swinton, UK, UK, 186–194. http:
//dl.acm.org/citation.cfm?id=2146303.2146331

23. Paul A. Gross, Micah S. Herstand, Jordana W. Hodges,
and Caitlin L. Kelleher. 2010. A Code Reuse Interface
for Non-programmer Middle School Students. In
Proceedings of the 15th International Conference on
Intelligent User Interfaces (IUI ’10). ACM, New York,
NY, USA, 219–228. DOI:
http://dx.doi.org/10.1145/1719970.1720001

24. Philip J. Guo. 2013. Online Python Tutor: Embeddable
Web-based Program Visualization for CS Education. In
Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE ’13). ACM, New
York, NY, USA, 579–584. DOI:
http://dx.doi.org/10.1145/2445196.2445368

25. Mark Guzdial. 2015. Learner-Centered Design of
Computing Education: Research on Computing for
Everyone. Synthesis Lectures on Human-Centered
Informatics 8, 6 (2015), 1–165.

26. Mark Guzdial and Andrea Forte. 2005. Design Process
for a Non-majors Computing Course. In Proceedings of
the 36th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE ’05). ACM, New York, NY,
USA, 361–365. DOI:
http://dx.doi.org/10.1145/1047344.1047468

27. Toshiyuki Hagiya, Toshiharu Horiuchi, and Tomonori
Yazaki. 2016. Typing Tutor: Individualized Tutoring in
Text Entry for Older Adults Based on Input Stumble
Detection. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI ’16).
ACM, New York, NY, USA, 733–744. DOI:
http://dx.doi.org/10.1145/2858036.2858455

28. Joseph Henrich, Steven J Heine, and Ara Norenzayan.
2010. The weirdest people in the world? Behavioral and
brain sciences 33, 2-3 (2010), 61–83.

29. Andrew Dean Ho, Isaac Chuang, Justin Reich,
Cody Austun Coleman, Jacob Whitehill, Curtis G
Northcutt, Joseph Jay Williams, John D Hansen, Glenn
Lopez, and Rebecca Petersen. 2015. HarvardX and
MITx: Two years of open online courses fall
2012-summer 2014. Available at SSRN 2586847 (2015).

30. Alexis Hope, Ted Schwaba, and Anne Marie Piper.
2014. Understanding Digital and Material Social
Communications for Older Adults. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’14). ACM, New York, NY, USA,
3903–3912. DOI:
http://dx.doi.org/10.1145/2556288.2557133

31. Carol Hymowitz and Robert Burnson. 2016. It’s Tough
Being Over 40 in Silicon Valley. Bloomberg
Businessweek. (Sep 2016).

32. Jeff Immelt. 2016. Why GE is giving up employee
ratings, abandoning annual reviews and rethinking the
role of HQ. LinkedIn Pulse interview. (Aug 2016).
Accessed: 2016-09-19.

33. Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007.
Storytelling Alice Motivates Middle School Girls to
Learn Computer Programming. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’07). ACM, New York, NY, USA,
1455–1464. DOI:
http://dx.doi.org/10.1145/1240624.1240844

34. Eric Klopfer, Hal Scheintaub, Wendy Huang, and Daniel
Wendel. 2009. StarLogo TNG. In Artificial Life Models
in Software. Springer, 151–182.

35. Celine Latulipe, Amy Gatto, Ha T. Nguyen, David P.
Miller, Sara A. Quandt, Alain G. Bertoni, Alden Smith,
and Thomas A. Arcury. 2015. Design Considerations for
Patient Portal Adoption by Low-Income, Older Adults.
In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 3859–3868. DOI:
http://dx.doi.org/10.1145/2702123.2702392

36. Rock Leung, Charlotte Tang, Shathel Haddad, Joanna
Mcgrenere, Peter Graf, and Vilia Ingriany. 2012. How
Older Adults Learn to Use Mobile Devices: Survey and
Field Investigations. ACM Trans. Access. Comput. 4, 3,
Article 11 (Dec. 2012), 33 pages. DOI:
http://dx.doi.org/10.1145/2399193.2399195

37. Q. Vera Liao and Wai-Tat Fu. 2014. Age Differences in
Credibility Judgments of Online Health Information.
ACM Trans. Comput.-Hum. Interact. 21, 1, Article 2
(Feb. 2014), 23 pages. DOI:
http://dx.doi.org/10.1145/2534410

38. Siân E. Lindley, Richard Harper, and Abigail Sellen.
2009. Desiring to Be in Touch in a Changing
Communications Landscape: Attitudes of Older Adults.
In Proceedings of the SIGCHI Conference on Human

http://mirror.racket-lang.org/releases/6.4/pdf-doc/drracket.pdf
http://mirror.racket-lang.org/releases/6.4/pdf-doc/drracket.pdf
http://dx.doi.org/10.1145/2485760.2485785
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=13510&org=CISE&from=fund
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=13510&org=CISE&from=fund
http://dl.acm.org/citation.cfm?id=2146303.2146331
http://dl.acm.org/citation.cfm?id=2146303.2146331
http://dx.doi.org/10.1145/1719970.1720001
http://dx.doi.org/10.1145/2445196.2445368
http://dx.doi.org/10.1145/1047344.1047468
http://dx.doi.org/10.1145/2858036.2858455
http://dx.doi.org/10.1145/2556288.2557133
http://dx.doi.org/10.1145/1240624.1240844
http://dx.doi.org/10.1145/2702123.2702392
http://dx.doi.org/10.1145/2399193.2399195
http://dx.doi.org/10.1145/2534410

Factors in Computing Systems (CHI ’09). ACM, New
York, NY, USA, 1693–1702. DOI:
http://dx.doi.org/10.1145/1518701.1518962

39. Johanna Meurer, Martin Stein, David Randall, Markus
Rohde, and Volker Wulf. 2014. Social Dependency and
Mobile Autonomy: Supporting Older Adults’ Mobility
with Ridesharing ICT. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’14). ACM, New York, NY, USA, 1923–1932.
DOI:http://dx.doi.org/10.1145/2556288.2557300

40. Nancy Morrow-Howell, Jim Hinterlong, Philip A
Rozario, and Fengyan Tang. 2003. Effects of
volunteering on the well-being of older adults. The
Journals of Gerontology Series B: Psychological
Sciences and Social Sciences 58, 3 (2003), S137–S145.

41. United Nations. 2015. World Population Ageing Report.
http:
//www.un.org/en/development/desa/population/
publications/pdf/ageing/WPA2015_Report.pdf.
(2015). Accessed: 2016-09-19.

42. Hugo Nicolau and Joaquim Jorge. 2012. Elderly
Text-entry Performance on Touchscreens. In
Proceedings of the 14th International ACM SIGACCESS
Conference on Computers and Accessibility (ASSETS
’12). ACM, New York, NY, USA, 127–134. DOI:
http://dx.doi.org/10.1145/2384916.2384939

43. Galit Nimrod. 2011. The fun culture in seniors’ online
communities. The Gerontologist 51, 2 (2011), 226–237.

44. Chris Norval, John L. Arnott, and Vicki L. Hanson.
2014. What’s on Your Mind?: Investigating
Recommendations for Inclusive Social Networking and
Older Adults. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’14).
ACM, New York, NY, USA, 3923–3932. DOI:
http://dx.doi.org/10.1145/2556288.2556992

45. British Columbia Ministry of Health. 2004. Social
Isolation Among Seniors: An Emerging Issue. http:
//www.health.gov.bc.ca/library/publications/
year/2004/Social_Isolation_Among_Seniors.pdf.
(Mar 2004). Accessed: 2016-09-19.

46. The White House: Office of the Press Secretary. 2016.
FACT SHEET: President Obama Announces Computer
Science For All Initiative. (Jan 2016).

47. International Labour Organization. 2008. International
Standard Classification of Occupations.
http://www.ilo.org/public/english/bureau/stat/
isco/isco08/. (2008). Accessed: 2016-09-19.

48. Seymour Papert. 1980. Mindstorms: Children,
Computers, and Powerful Ideas. Basic Books, Inc., New
York, NY, USA.

49. Annie Murphy Paul. 2014. Bill Gates Is an Autodidact.
You’re Probably Not. Ed tech promoters need to
understand how most of us learn. Slate (July 2014).

50. Anne Marie Piper, Raymundo Cornejo, Lisa Hurwitz,
and Caitlin Unumb. 2016. Technological Caregiving:
Supporting Online Activity for Adults with Cognitive
Impairments. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 5311–5323.
DOI:http://dx.doi.org/10.1145/2858036.2858260

51. Leo Porter, Dennis Bouvier, Quintin Cutts, Scott
Grissom, Cynthia Lee, Robert McCartney, Daniel
Zingaro, and Beth Simon. 2016. A Multi-institutional
Study of Peer Instruction in Introductory Computing. In
Proceedings of the 47th ACM Technical Symposium on
Computing Science Education (SIGCSE ’16). ACM,
New York, NY, USA, 358–363. DOI:
http://dx.doi.org/10.1145/2839509.2844642

52. Laura Ramos, Elise van den Hoven, and Laurie Miller.
2016. Designing for the Other ’Hereafter’: When Older
Adults Remember About Forgetting. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). ACM, New York, NY,
USA, 721–732. DOI:
http://dx.doi.org/10.1145/2858036.2858162

53. Yvonne Rogers, Jeni Paay, Margot Brereton, Kate L.
Vaisutis, Gary Marsden, and Frank Vetere. 2014. Never
Too Old: Engaging Retired People Inventing the Future
with MaKey MaKey. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’14). ACM, New York, NY, USA, 3913–3922.
DOI:http://dx.doi.org/10.1145/2556288.2557184

54. Jason Scott. 2014. Aging Australians Balk at World’s
Oldest Retirement Age. Bloomberg News. (Jun 2014).

55. The Yomiuri Shimbun. 2016. Plan to make programming
mandatory at schools a step to foster creativity. http:
//the-japan-news.com/news/article/0002951918.
(May 2016). Accessed: 2016-09-19.

56. Sarah Stevenson. 2014. 20 Facts about Senior Isolation
That Will Stun You. http://www.aplaceformom.com/
blog/10-17-14-facts-about-senior-isolation/.
(Oct 2014). Accessed: 2016-09-19.

57. John Vines, Gary Pritchard, Peter Wright, Patrick
Olivier, and Katie Brittain. 2015. An Age-Old Problem:
Examining the Discourses of Ageing in HCI and
Strategies for Future Research. ACM Trans.
Comput.-Hum. Interact. 22, 1, Article 2 (Feb. 2015), 27
pages. DOI:http://dx.doi.org/10.1145/2696867

58. Amy Voida, Sheelagh Carpendale, and Saul Greenberg.
2010. The Individual and the Group in Console Gaming.
In Proceedings of the 2010 ACM Conference on
Computer Supported Cooperative Work (CSCW ’10).
ACM, New York, NY, USA, 371–380. DOI:
http://dx.doi.org/10.1145/1718918.1718983

59. Todd Wasserman. 2014. Old Coders: When
Programming Is a Second Career. Mashable Business:
http://mashable.com/2014/08/21/
programming-as-a-second-career/. (Aug 2014).
Accessed: 2016-09-19.

http://dx.doi.org/10.1145/1518701.1518962
http://dx.doi.org/10.1145/2556288.2557300
http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf
http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf
http://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf
http://dx.doi.org/10.1145/2384916.2384939
http://dx.doi.org/10.1145/2556288.2556992
http://www.health.gov.bc.ca/library/publications/year/2004/Social_Isolation_Among_Seniors.pdf
http://www.health.gov.bc.ca/library/publications/year/2004/Social_Isolation_Among_Seniors.pdf
http://www.health.gov.bc.ca/library/publications/year/2004/Social_Isolation_Among_Seniors.pdf
http://www.ilo.org/public/english/bureau/stat/isco/isco08/
http://www.ilo.org/public/english/bureau/stat/isco/isco08/
http://dx.doi.org/10.1145/2858036.2858260
http://dx.doi.org/10.1145/2839509.2844642
http://dx.doi.org/10.1145/2858036.2858162
http://dx.doi.org/10.1145/2556288.2557184
http://the-japan-news.com/news/article/0002951918
http://the-japan-news.com/news/article/0002951918
http://www.aplaceformom.com/blog/10-17-14-facts-about-senior-isolation/
http://www.aplaceformom.com/blog/10-17-14-facts-about-senior-isolation/
http://dx.doi.org/10.1145/2696867
http://dx.doi.org/10.1145/1718918.1718983
http://mashable.com/2014/08/21/programming-as-a-second-career/
http://mashable.com/2014/08/21/programming-as-a-second-career/

60. Jenny Waycott, Frank Vetere, Sonja Pedell, Lars Kulik,
Elizabeth Ozanne, Alan Gruner, and John Downs. 2013.
Older Adults As Digital Content Producers. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 39–48. DOI:
http://dx.doi.org/10.1145/2470654.2470662

61. Uri Wilensky, Corey E. Brady, and Michael S. Horn.
2014. Fostering Computational Literacy in Science
Classrooms. Commun. ACM 57, 8 (Aug. 2014), 24–28.
DOI:http://dx.doi.org/10.1145/2633031

62. David Wolber, Hal Abelson, Ellen Spertus, and Liz
Looney. 2011. App Inventor. ” O’Reilly Media, Inc.”.

http://dx.doi.org/10.1145/2470654.2470662
http://dx.doi.org/10.1145/2633031

	Introduction
	Related Work
	Age-Targeted Research on Learning Programming
	Older Adults' Use of Technology

	Methodology: International Online Survey
	The Survey Instrument
	Data Overview and Analysis
	Study Design Limitations

	Demographics: Who Are These Learners?
	Time Devoted to Learning Programming
	Why are older adults learning programming?
	Age-Related Motivations
	Enrichment-Related Motivations
	Job-Related Motivations

	How are older adults learning programming?
	What frustrations do learners experience?
	Age-Related Frustrations
	Pedagogy-Related Frustrations
	Technology-Related Frustrations

	Discussion
	Relationship to HCI Research on Aging and Technology
	Learner-Centered Design for Older Adult Programmers

	Conclusion
	REFERENCES

